This study aims to optimize the composite excipients suitable for the preparation of concentrated water pills of personalized traditional Chinese medicine prescriptions by the extruding-rounding method and investigate the roles of each excipient in the preparation process. The fiber materials and powder materials were taken as the standard materials suitable as excipients in the preparation of personalized concentrated water pills without excipient. Water absorption properties and torque rheology were used as indicators for selecting the materials of composite excipients. The ratio of composite excipients was optimized by D-optimal mixture design. Moreover, to demonstrate the universal applicability of the optimal composite excipients, this study selected three traditional Chinese medicine prescriptions with low, medium, and high extraction rates to verify the optimal ratio. Finally, the effects of each selected excipient on the molding of personalized concentrated water pills were investigated with the four parameters of the pill molding quality as indicators. The optimized composite excipients were dextrin∶microcrystalline cellulose(MCC)∶low-substituted hydroxypropyl cellulose(L-HPC) at a ratio of 1∶2∶4. The composite excipients were used for the preparation of personalized concentrated water pills with stable process, good quality, and a wide range of application. Dextrin acted as a diluent and accelerated the speed of extruding. MCC mainly served as an adhesive, increasing the cohesion and viscosity of the pills. L-HPC as a water absorbent and disintegrating agent can absorb and hold the water of the concentrate and has a strong disintegration effect.
Keywords: D-optimal mixture design; composite excipients; concentrated water pills of personalized traditional Chinese medicine prescriptions; extruding-rounding method.