Accelerated Wound Healing by Electrospun Multifunctional Fibers with Self-Powered Performance

Langmuir. 2024 Apr 30;40(17):9134-9143. doi: 10.1021/acs.langmuir.4c00545. Epub 2024 Apr 18.

Abstract

Wound healing has been a persistent clinical challenge for a long time. Electrical stimulation is an effective therapy with the potential to accelerate wound healing. In this work, the self-powered electrospun nanofiber membranes (triples) were constructed as multifunctional wound dressings with electrical stimulation and biochemical capabilities. Triple was composed of a hydrolyzable inner layer with antiseptic and hemostatic chitosan, a hydrophilic core layer loaded with conductive AgNWs, and a hydrophobic outer layer fabricated by self-powered PVDF. Triple exhibited presentable wettability and acceptable moisture permeability. Electrical performance tests indicated that triple can transmit electrical signals formed by the piezoelectric effect to the wound. High antibacterial activities were observed for triple against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, with inhibition rates of 96.52, 98.63, and 97.26%, respectively. In vitro cell assays demonstrated that triple cells showed satisfactory proliferation and mobility. A whole blood clotting test showed that triple can enhance hemostasis. The innovative self-powered multifunctional fibers presented in this work offer a promising approach to addressing complications and expediting the promotion of chronic wound healing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Bacterial Agents* / chemistry
  • Anti-Bacterial Agents* / pharmacology
  • Cell Proliferation / drug effects
  • Chitosan / chemistry
  • Escherichia coli* / drug effects
  • Humans
  • Nanofibers* / chemistry
  • Pseudomonas aeruginosa* / drug effects
  • Pseudomonas aeruginosa* / physiology
  • Staphylococcus aureus* / drug effects
  • Wound Healing* / drug effects

Substances

  • Anti-Bacterial Agents
  • Chitosan