Looking Beyond Mortality Prediction: Primary Care Physician Views of Patients' Palliative Care Needs Predicted by a Machine Learning Tool

Appl Clin Inform. 2024 May;15(3):460-468. doi: 10.1055/a-2309-1599. Epub 2024 Apr 18.

Abstract

Objectives: To assess primary care physicians' (PCPs) perception of the need for serious illness conversations (SIC) or other palliative care interventions in patients flagged by a machine learning tool for high 1-year mortality risk.

Methods: We surveyed PCPs from four Brigham and Women's Hospital primary care practice sites. Multiple mortality prediction algorithms were ensembled to assess adult patients of these PCPs who were either enrolled in the hospital's integrated care management program or had one of several chronic conditions. The patients were classified as high or low risk of 1-year mortality. A blinded survey had PCPs evaluate these patients for palliative care needs. We measured PCP and machine learning tool agreement regarding patients' need for an SIC/elevated risk of mortality.

Results: Of 66 PCPs, 20 (30.3%) participated in the survey. Out of 312 patients evaluated, 60.6% were female, with a mean (standard deviation [SD]) age of 69.3 (17.5) years, and a mean (SD) Charlson Comorbidity Index of 2.80 (2.89). The machine learning tool identified 162 (51.9%) patients as high risk. Excluding deceased or unfamiliar patients, PCPs felt that an SIC was appropriate for 179 patients; the machine learning tool flagged 123 of these patients as high risk (68.7% concordance). For 105 patients whom PCPs deemed SIC unnecessary, the tool classified 83 as low risk (79.1% concordance). There was substantial agreement between PCPs and the tool (Gwet's agreement coefficient of 0.640).

Conclusions: A machine learning mortality prediction tool offers promise as a clinical decision aid, helping clinicians pinpoint patients needing palliative care interventions.

MeSH terms

  • Aged
  • Female
  • Humans
  • Machine Learning*
  • Male
  • Middle Aged
  • Mortality
  • Palliative Care*
  • Physicians, Primary Care*
  • Surveys and Questionnaires

Grants and funding

Funding None declared.