The carrier losses due to radiative recombination in monolayer transition metal dichalcogenides are studied using fully microscopic many-body models. The density- and temperature-dependent losses in various Mo- and W-based materials are shown to be dominated by Coulomb correlations beyond the Hartree-Fock level. Despite the much stronger Coulomb interaction in 2D materials, the radiative losses are comparable-if not weaker-than in conventional III-V materials. A strong dependence on the dielectric environment is found in agreement with experimental results.
Keywords: Photoluminescence; excitonic correlations; luminescence equations; monolayer; radiative lifetimes; transition metal dichalcogenide.