Methionine (Met) supplementation is common practice in broilers to support nutrition, yet there are gaps in the understanding of its role in systemic physiology. Furthermore, several different Met sources are available that may have different physiological effects. This study evaluated the mode of action of Met deficiency (no Met-supplementation) and supplementation (0.25% DL- or L-Met, 0.41% liquid methionine hydroxy analog-free acid (MHA-FA)), and of Met source (DL-, L- or MHA-FA) in broiler chickens, via host transcriptomics. Biological pathway activation modeling was performed to predict the likely phenotypic effects of differentially expressed genes (DEGs) in tissue samples from the jejunum, liver and breast obtained at 10, 21 and 34/35 d of age from three experiments in a combined analysis. Animal performance data showed that Met deficiency reduced BW, daily BW gain, daily feed intake, and breast yield, and increased feed conversion ratio in all experiments (P < 0.05). Effects of Met deficiency on gene expression were least evident in the jejunum and most evident in the liver and breast, as evidenced by the number of DEG and activated pathways. Activated pathways suggested Met deficiency was associated with inhibited protein turnover, gut barrier integrity, and adaptive immunity functions in the jejunum, that predicted reduced breast yield. There was an interaction with age; in Met-deficient birds, there were 333 DEGs in the jejunum of starter vs finisher birds suggesting young birds were more sensitive to Met deficiency than older birds. In the liver, Met deficiency activated pathways associated with lipid turnover, amino acid metabolism, oxidative stress, and the immune system, whereas in breast, it activated pathways involved in metabolic regulation, hemostasis, the neuronal system, and oxidative stress, again predicting a negative impact on breast yield. In the starter phase, supplementation with DL-Met compared to MHA-FA inhibited gamma-aminobutyric acid activity and oxidative stress in breast tissue. When data from all tissues were integrated, increased expression of a liver gene (ENSGALG00000042797) was found to be correlated with the expression of several genes that best explained variation due to the Met deficiency in jejunum and breast muscle. Some of these genes were involved in anti-oxidant systems. Overall, the findings indicate that impaired growth performance due to Met deficiency results from an array of tissue-specific molecular mechanisms in which oxidative stress plays a key systemic role. Young birds are more sensitive to Met-deficiency and DL-Met was a preferential source of Met than L- or MHA-FA during the starter phase.
Keywords: Deficiency; Gene expression; Metabolic pathways; Methionine sources; Oxidative stress.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.