The problem of soil barrier caused by excessive accumulation of nitrogen is common in continuous cropping soil of facility agriculture. To investigate the modulating effects of biochar amendment on soil nitrogen transformation in greenhouse continuous cropping systems, we conducted a pot experiment with two treatments, no biochar addition (CK) and 5% biochar addition (mass ratio). We analyzed the effects of biochar addition on soil microbial community structure, abundances of genes functioning in nitrogen cycling, root growth and nitrogen metabolism-related genes expressions of cucumber seedlings. The results showed that biochar addition significantly increased plant height, root dry mass, total root length, root surface area, and root volume of cucumber seedlings. Rhizosphere environment was improved, which enhanced root nitrogen absorption by inducing the up-regulation of genes expressions related to plant nitrogen metabolism. Biochar addition significantly increased soil microbial biomass nitrogen, nitrate nitrogen, and nitrite nitrogen contents. The abundances of bacteria that involved in nitrogen metabolism, including Proteobacteria, Cyanobacteria, and Rhizobiales (soil nitrogen-fixing bacteria), were also significantly improved in the soil. The abundances of genes functioning in soil nitrification and nitrogen assimilation reduction, and the activities of enzymes involved in nitrogen metabolisms such as hydroxylamine dehydrogenase, nitronate monooxygenase, carbonic anhydrase were increased. In summary, biochar addition improved soil physicochemical properties and microbial community, and affected soil nitrogen cycling through promoting nitrification and nitrogen assimilation. Finally, nitrogen adsorption capacity and growth of cucumber plant was increased.
设施连作土壤普遍存在由于氮素过量积累导致的土壤障碍问题。本研究以不添加生物炭作为对照,以添加5%的生物炭(质量比)为处理,采用盆栽方式分析了生物炭对土壤微生物群落结构、氮循环功能基因丰度以及黄瓜幼苗根系生长和氮素代谢相关基因表达的影响,以期探明外源添加生物炭对设施连作土壤氮素转化的调控作用。结果表明: 与对照相比,设施连作土壤添加生物炭处理后显著提高了黄瓜幼苗的株高、根系干重、总根长、根表面积和根体积;改善了根区环境,诱导黄瓜通过上调植物氮代谢相关基因的表达促进了黄瓜根系对氮素的吸收。施入生物炭显著提高了土壤微生物生物量氮、硝态氮和亚硝态氮含量,显著提高了土壤中变形菌门和蓝细菌门以及鞘脂单胞菌(土壤固氮菌)等氮代谢相关菌群丰度;增加了土壤硝化、氮同化还原功能基因丰度;增强了参与氮代谢的羟胺脱氢酶、硝基单加氧酶和碳酸酐酶活性。综上,根施生物炭改善了设施连作土壤理化性质和微生物生态系统,通过促进硝化作用和氮同化作用来调节土壤的氮循环过程,提高了植株对土壤氮素的吸收能力,最终促进了黄瓜植株生长。.
Keywords: biochar; facility continuous cropping soil; macrogenome; nitrogen cycling; soil microorganism.