Firefighters' or instructors' exposure to airborne chemicals during live-fire training may depend on fuels being burned, fuel orientation and participants' location within the structure. This study was designed to evaluate the impact of different control measures on exposure risk to combustion byproducts during fire dynamics training where fuel packages are mounted at or near the ceiling. These measures included substitution of training fuels (low density wood fiberboard, oriented strand board (OSB), pallets, particle board, plywood) and adoption of engineering controls such as changing the location of the instructor and students using the structure. Experiments were conducted for two different training durations: the typical six ventilation cycle (6-cycle) and a shorter three ventilation cycle (3-cycle) with a subset of training fuels. In Part A of this series, we characterized the fire dynamics within the structure, including the ability of each fuel to provide an environment that achieves the training objectives. Here, in Part B, airborne chemical concentrations are reported at the location where fire instructors would typically be operating. We hypothesized that utilizing a training fuel package with solid wood pallets would result in lower concentrations of airborne contaminants at the rear instructor location than wood-based sheet products containing additional resins and/or waxes. In the 6-cycle experiments (at the rear instructor location), OSB-fueled fires produced the highest median concentrations of benzene and 1,3 butadiene, plywood-fueled fires produced the highest total polycyclic aromatic hydrocarbon (PAH) concentrations, particle board-fueled fires produced the highest methyl isocyanate concentrations, and pallet-fueled fires produced the highest hydrogen chloride concentrations. All fuels other than particle board produced similarly high levels of formaldehyde at the rear instructor location. The OSB fuel package created the most consistent fire dynamics over 6-cycles, while fiberboard resulted in consistent fire dynamics only for the first three cycles. In the follow-on 3-cycle experiment, PAH, benzene, and aldehyde concentrations were similar for the OSB and fiberboard-fueled fires. Air sampling did not identify any clear differences between training fires from burning solid wood pallets and those that incorporate wood-based sheet products for this commonly employed fuel arrangement with fuels mounted high in the compartment. However, it was found that exposure can be reduced by moving firefighters and instructors lower in the compartment and/or by moving the instructor in charge of ventilation from the rear of the structure (where highest concentrations were consistently measured) to an outside position.
Keywords: Firefighter; NFPA 1403; contamination control; occupational exposure; training fires.