Quantification of MicroRNA in a Single Living Cell via Ionic Current Rectification-Based Nanopore for Triple Negative Breast Cancer Diagnosis

Anal Chem. 2024 May 14;96(19):7411-7420. doi: 10.1021/acs.analchem.3c05027. Epub 2024 Apr 23.

Abstract

Accurate analysis of microRNAs (miRNAs) at the single-cell level is extremely important for deeply understanding their multiple and intricate biological functions. Despite some advancements in analyzing single-cell miRNAs, challenges such as intracellular interferences and insufficient detection limits still remain. In this work, an ultrasensitive nanopore sensor for quantitative single-cell miRNA-155 detection is constructed based on ionic current rectification (ICR) coupled with enzyme-free catalytic hairpin assembly (CHA). Benefiting from the enzyme-free CHA amplification strategy, the detection limit of the nanopore sensor for miRNA-155 reaches 10 fM and the nanopore sensor is more adaptable to complex intracellular environments. With the nanopore sensor, the concentration of miRNA-155 in living single cells is quantified to realize the early diagnosis of triple-negative breast cancer (TNBC). Furthermore, the nanopore sensor can be applied in screening anticancer drugs by tracking the expression level of miRNA-155. This work provides an adaptive and universal method for quantitatively analyzing intracellular miRNAs, which will greatly improve our understanding of cell heterogeneity and provide a more reliable scientific basis for exploring major diseases at the single-cell level.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Female
  • Humans
  • Limit of Detection
  • MicroRNAs* / analysis
  • Nanopores*
  • Single-Cell Analysis*
  • Triple Negative Breast Neoplasms* / diagnosis
  • Triple Negative Breast Neoplasms* / genetics
  • Triple Negative Breast Neoplasms* / pathology