Introduction: This in vitro study was conducted to assess the phototoxic effects of curcumin, nano-curcumin, and erythrosine on the viability of Streptococcus mutans (S. mutans) in suspension and biofilm forms. Methods: Various concentrations of curcumin (1.5 g/L, 3 g/L), nano-curcumin (3 g/L), and erythrosine (100 μM/L, 250 μM/L) were examined for their impact on planktonic and biofilm cultures of S. mutans, either individually or in conjunction with light irradiation (photodynamic therapy or PDT). A blue light-emitting diode (LED) with a central wavelength of 450 nm served as the light source. The results were compared to 0.12% chlorhexidine digluconate (CHX) as the positive control, and a solution containing neither a photosensitizer (PS) nor a light source as the negative control group. The dependent variable was the number of viable microorganisms per experiment (CFU/mL). Results: Antimicrobial PDT caused a significant reduction in the viability of S. mutans in both planktonic and biofilm forms, compared to the negative control group (P<0.05). The highest cell killing was observed in PDT groups with curcumin 3 g/L or erythrosine 250 μmol/L, although the difference with PDT groups using curcumin 1.5 g/L or erythrosine 100 μmol/L was not significant (P>0.05). Antimicrobial treatments were more effective against planktonic S. mutans than the biofilm form. Conclusion: PDT with either curcumin 1.5 g/L or erythrosine 100 μmol/L may be suggested as an alternative to CHX to inactivate the bacteria in dental plaque or deep cavities. Nano-curcumin, at the selected concentration, exhibited lower efficacy in killing S. mutans compared to Curcumin or erythrosine.
Keywords: Curcumin; Dental caries; Photodynamic therapy; Photosensitizer; Streptococcus mutans.
Copyright © 2024 J Lasers Med Sci.