Objective.The efficient usage of prompt photons like Cherenkov emission is of great interest for the design of the next generation, cost-effective, and ultra-high-sensitivity time-of-flight positron emission tomography (TOF-PET) scanners. With custom, high power consuming, readout electronics and fast digitization the prospect of sub-300 ps FWHM with PET-sized BGO crystals have been shown. However, these results are not scalable to a full system consisting of thousands of detector elements.Approach.To pave the way toward a full TOF-PET scanner, we examine the performance of the FastIC ASIC with Cherenkov-emitting scintillators (BGO), together with one of the most recent SiPM detector developments based on metal trenching from FBK. The FastIC is a highly configurable ASIC with 8 input channels, a power consumption of 12 mW ch-1and excellent linearity on the energy measurement. To put the timing performance of the FastIC into perspective, comparison measurements with high-power consuming readout electronics are performed.Main results.We achieve a best CTR FWHM of 330 ps for 2 × 2 × 3 mm3and 490 ps for 2 × 2 × 20 mm3BGO crystals with the FastIC. In addition, using 20 mm long LSO:Ce:Ca crystals, CTR values of 129 ps FWHM have been measured with the FastIC, only slightly worse to the state-of-the-art of 95 ps obtained with discrete HF electronics.Significance.For the first time, the timing capability of BGO with a scalable ASIC has been evaluated. The findings underscore the potential of the FastIC ASIC in the development of cost-effective TOF-PET scanners with excellent timing characteristics.
Keywords: BGO; TOF-PET; cherekov emission; coincidence time resolution (CTR); fastic ASIC; scintillating crystal; silicon photomultiplier (SiPM).
Creative Commons Attribution license.