Novel triphenyltin(IV) compounds with carboxylato N-functionalized 2-quinolones as promising potential anticancer drug candidates: in vitro and in vivo evaluation

Dalton Trans. 2024 May 14;53(19):8298-8314. doi: 10.1039/d4dt00182f.

Abstract

Three newly synthesized triphenyltin(IV) compounds, Ph3SnL1 (L1- = 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoato), Ph3SnL2 (L2- = 2-(4-methyl-2-oxoquinolin-1(2H)-yl)ethanoato), and Ph3SnL3 (L3- = 2-(4-hydroxy-2-oxoquinolin-1(2H)-yl)ethanoato), were characterized by elemental microanalysis, FT-IR spectroscopy and multinuclear (1H, 13C and 119Sn) NMR spectroscopy. A single X-ray diffraction study indicates that compounds Ph3SnL1 and Ph3SnL2 exhibit a 1D zig-zag chain polymeric structure, which in the case of Ph3SnL2 is additionally stabilized by π-interactions. In addition, the synthesized compounds were further examined using density functional theory and natural bond orbital analysis. The compounds have been evaluated for their in vitro anticancer activity against three human cell lines: MCF-7 (breast adenocarcinoma), A375 (melanoma), HCT116 (colorectal carcinoma), and three murine cell lines: 4T1 (breast carcinoma), B16 (melanoma), CT26 (colon carcinoma) using MTT and CV assays. The IC50 values fall in the nanomolar range, indicating that these compounds possess better anticancer activity than cisplatin. The study of the effect of the newly developed drug Ph3SnL1 showed its plasticity in achieving an antitumor effect in vitro, which depends on the specificity of the phenotype and the redox status of the malignant cell line and ranges from the initiation of apoptotic cell death to the induction of differentiation to a more mature cell form. In the syngeneic model of murine melanoma, Ph3SnL1 showed the potential to reduce the tumor volume similar to cisplatin, but in a well-tolerated form and with low systemic toxicity, representing a significant advantage over the conventional drug.

MeSH terms

  • Animals
  • Antineoplastic Agents* / chemical synthesis
  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Density Functional Theory
  • Drug Screening Assays, Antitumor*
  • Humans
  • Mice
  • Molecular Structure
  • Organotin Compounds* / chemical synthesis
  • Organotin Compounds* / chemistry
  • Organotin Compounds* / pharmacology
  • Quinolones* / chemical synthesis
  • Quinolones* / chemistry
  • Quinolones* / pharmacology
  • Structure-Activity Relationship