One of the most common forms of cancer in fair skinned populations is Non-Melanoma Skin Cancer (NMSC), which primarily consists of Basal Cell Carcinoma (BCC), and cutaneous Squamous Cell Carcinoma (SCC). Detecting NMSC early can significantly improve treatment outcomes and reduce medical costs. Similarly, Actinic Keratosis (AK) is a common skin condition that, if left untreated, can develop into more serious conditions, such as SCC. Hyperspectral imagery is at the forefront of research to develop non-invasive techniques for the study and characterisation of skin lesions. This study aims to investigate the potential of near-infrared hyperspectral imagery in the study and identification of BCC, SCC and AK samples in comparison with healthy skin. Here we use a pushbroom hyperspectral camera with a spectral range of ≈ 900 to 1600 nm for the study of these lesions. For this purpose, an ad hoc platform was developed to facilitate image acquisition. This study employed robust statistical methods for the identification of an optimal spectral window where the different samples could be differentiated. To examine these datasets, we first tested for the homogeneity of sample distributions. Depending on these results, either traditional or robust descriptive metrics were used. This was then followed by tests concerning the homoscedasticity, and finally multivariate comparisons of sample variance. The analysis revealed that the spectral regions between 900.66-1085.38 nm, 1109.06-1208.53 nm, 1236.95-1322.21 nm, and 1383.79-1454.83 nm showed the highest differences in this regard, with <1% probability of these observations being a Type I statistical error. Our findings demonstrate that hyperspectral imagery in the near-infrared spectrum is a valuable tool for analyzing, diagnosing, and evaluating non-melanoma skin lesions, contributing significantly to skin cancer research.
Copyright: © 2024 Courtenay et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.