Although significant efforts have been made in the past few decades, the development of affordable, durable, and effective electrocatalysts for direct methanol fuel cells (DMFCs) remains a formidable challenge. Herein, we present a facile and efficient phosphorization approach for synthesizing PtP2 intermetallic nanocrystals and utilize them as electrocatalysts in the methanol oxidation reaction (MOR). Impressively, the synthesized PtP2 nanocatalysts exhibit a mass activity of 2.14 mA μg-1 and a specific activity of 6.28 mA cm-2, which are 5.1 and 9.5 times higher than those achieved by the current state-of-the-art commercial Pt/C catalyst, respectively. Moreover, the PtP2 nanocatalysts demonstrate improved stability toward acidic MOR by retaining 92.1% of its initial mass activity after undergoing 5000 potential cycles, far surpassing that of the commercial Pt/C (38%). Further DMFC tests present a 2.7 times higher power density than that of the commercial Pt/C, underscoring their potential for application in methanol fuel cells. Density functional theory calculations suggest that the accelerated MOR kinetics and improved CO tolerance on PtP2 can be attributed to the attenuated binding strength of CO intermediates and the enhanced stability due to strong Pt-P interaction. To our knowledge, this is the first report identifying the MOR performance on PtP2 intermetallic nanocrystals, highlighting their potential as highly active and stable nanocatalysts for DMFCs.
Keywords: PtP2; direct methanol fuel cells; methanol electrooxidation; phosphorization treatment; platinum phosphide.