We explore the open-ended nature of evolution in Genelife, an evolutionary extension of Conway's Game of Life cellular automaton in which "live" cell states are endowed at birth with a genome that affects their local dynamics and can be inherited. Both genetic sequences and locally connected spatial patterns are analyzed for novelty, keeping track of all new structures, and innovation is quantified using activity statistics. The impacts of both spatial symmetry breaking with nontotalistic rules and superimposed density regulation of the live state proliferation on the open-ended nature of the evolution are explored. Conditions are found where both genetic and spatial patterns exhibit open-ended innovation. This innovation appears to fall short of functional biological innovation, however, and potential reasons for this are discussed.
Keywords: Evolution; Game of Life; activity statistics; cellular automata; open-endedness; self-organization.
© 2023 Massachusetts Institute of Technology. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.