Gathering information on plastic particles in composts and the processes they undergo is important in terms of potentially limiting their further entry into the environment, for example, in improving the fertilising properties of soils. Microplastics (MPs) were determined in composts produced from urban greenery. They are present in decreasing order: polyethylene terephthalate, polystyrene, polyethylene, and polypropylene. The determination of polymers and additives used to improve their properties was performed by pyrolysis and gas chromatography with mass spectrometric detection (Py-GC/MS). Additives and microplastics are most concentrated in composts in the 0.315-0.63 and 0.63-1.25 mm grain size class, together with the carbon contained in the compost dry matter. Additives form 0.11-0.13% of MPs in dry matter of compost. The average concentration of microplastics in the particle size class from 0.63 to 1.25 mm is 2434 ± 224 mg/kg; in the total sample of composts, it is 1368 ± 286 mg/kg of P-MPs. For composts with particle size <2.5 mm, a relationship between the C/N ratio and the plastic particle concentration was statistically significant. It documents a similar behaviour of lignocellulose and plastic particles during the degradation processes. A relationship between the concentration of polymer markers and additives in the compost dry matter and their concentrations in the leachate has been demonstrated. The leachability from compost is higher for additives than for chemical compounds originating from the decomposition of the main components of MPs. The suitability of the use of the compost for agricultural purposes was monitored by the germination index (GI) for watercress. The lowest value of the GI was determined in the particle size class from 0.63 to 1.25 mm. The leachability of polymer markers and additives alone cannot explain the low GI value in this grain size class. The GI value is also influenced by the leachability of chemical compounds characterised by the value of dissolved organic carbon (DOC) and water-leachable nitrogen (Nw). A statistically significant dependence between DOC/Nw and the germination index value was found.
Keywords: Additives; Compost; Grain size composition; Microplastics; Phthalic acid esters; Watercress.
Copyright © 2024 Elsevier Ltd. All rights reserved.