Extracellular vesicles (EVs) are cell-secreted nanovesicles that play an important role in long-range cell-cell communication. Although EVs pose a promising alternative to cell-based therapy, targeted in vivo delivery still falls short. Many studies have explored the surface modification of EVs to enhance their targeting capabilities. However, to our knowledge, there are no standardized practices to confirm the successful surface modification of EVs or calculate the degree of conjugation on EV surfaces (conjugation efficiency). These pieces of information are essential in the reproducibility of targeted EV therapeutics and the determination of optimized conjugation conditions for EVs to see significant therapeutic effects in vitro and in vivo. This review will discuss the vast array of techniques adopted, technologies developed, and efficiency definitions made by studies that have calculated EV/nanoparticle surface conjugation efficiency and how differences between studies may contribute to differently reported conjugation efficiencies.
Keywords: bulk analysis technologies; conjugation efficiency; extracellular vesicles; nanotherapeutic; single-nanovesicle analysis technologies; surface modification; targeted therapy.