Vitamin D3 synthesis in human skin is initiated by solar ultraviolet radiation (UVR) exposure of precursor 7-dehydrocholesterol (7DHC), but influence of age on the early stage of vitamin D3 metabolism is uncertain. We performed a prospective standardised study in healthy ambulant adults aged ≥65 and ≤40 years examining (1) if baseline skin 7DHC concentration differs between younger and older adults and (2) the impact of older age on serum vitamin D3 response to solar simulated UVR. Eleven younger (18-40 years) and 10 older (65-89 years) adults, phototype I-III, received low-dose UVR (95% UVA, 5% UVB, 1.3 SED) to ~35% of the body surface area. Biopsies were taken for 7DHC assay from unexposed skin, skin immediately and 24 h post-UVR, and blood sampled at baseline, 24 h and 7 d post-UVR for vitamin D3 assay. Samples were analysed by HPLC-MS/MS. Baseline skin 7DHC (mean ± SD) was 0.22 ± 0.07 and 0.25 ± 0.08 µg/mg in younger versus older adults (no significant difference). Baseline serum vitamin D3 concentration was 1.5 ± 1.5 and 1.5 ± 1.7 nmol/L in younger versus older adults, respectively, and showed a significant increase in both groups post-UVR (no significant differences between age groups). Thus, skin 7DHC concentration was not a limiting factor for vitamin D3 production in older relative to younger adults. This information assists public health guidance on sun exposure/vitamin D nutrition, with particular relevance to the growing populations of healthy ambulant adults ≥65 years.
Keywords: 7-dehydrocholesterol; elderly; photobiology; skin; ultraviolet radiation; vitamin D.