A recombinant plasmid encoding human hepatocyte growth factor promotes healing of combined radiation-trauma skin injury involved in regulating Nrf2 pathway in mice

J Radiat Res. 2024 May 23;65(3):279-290. doi: 10.1093/jrr/rrae011.

Abstract

Combined radiation-trauma skin injury represents a severe and intractable condition that urgently requires effective therapeutic interventions. In this context, hepatocyte growth factor (HGF), a multifunctional growth factor with regulating cell survival, angiogenesis, anti-inflammation and antioxidation, may be valuable for the treatment of combined radiation-trauma injury. This study investigated the protective effects of a recombinant plasmid encoding human HGF (pHGF) on irradiated human immortalized keratinocytes (HaCaT) cells in vitro, and its capability to promote the healing of combined radiation-trauma injuries in mice. The pHGF radioprotection on irradiated HaCaT cells in vitro was assessed by cell viability, the expression of Nrf2, Bcl-2 and Bax, as well as the secretion of inflammatory cytokines. In vivo therapeutic treatment, the irradiated mice with full-thickness skin wounds received pHGF local injection. The injuries were appraised based on relative wound area, pathology, immunohistochemical detection, terminal deoxynucleotidyl transferase dUTP nick end labelling assay and cytokine content. The transfection of pHGF increased the cell viability and Nrf2 expression in irradiated HaCaT cells. pHGF also significantly upregulated Bcl-2 expression, decreased the Bax/Bcl-2 ratio and inhibited the expression of interleukin-1β and tumor necrosis factor-α in irradiated cells. Local pHGF injection in vivo caused high HGF protein expression and noticeable accelerated healing of combined radiation-trauma injury. Moreover, pHGF administration upregulated Nrf2, vascular endothelial growth factor, Bcl-2 expression, downregulated Bax expression and mitigated inflammatory response. In conclusion, the protective effect of pHGF may be related to inhibiting apoptosis and inflammation involving by upregulating Nrf2. Local pHGF injection distinctly promoted the healing of combined radiation-trauma injury and demonstrates potential as a gene therapy intervention for combined radiation-trauma injury in clinic.

Keywords: Nrf2; combined radiation-trauma skin injury; hepatocyte growth factor; plasmid.

MeSH terms

  • Animals
  • Apoptosis
  • Cell Survival / drug effects
  • Cell Survival / radiation effects
  • Cytokines / metabolism
  • HaCaT Cells
  • Hepatocyte Growth Factor* / genetics
  • Humans
  • Keratinocytes / radiation effects
  • Male
  • Mice
  • NF-E2-Related Factor 2* / metabolism
  • Plasmids*
  • Radiation Injuries
  • Signal Transduction*
  • Skin* / pathology
  • Skin* / radiation effects
  • Wound Healing* / drug effects

Substances

  • NF-E2-Related Factor 2
  • Hepatocyte Growth Factor
  • Cytokines
  • HGF protein, human