Purpose: In contrast to peritumoral edema in metastases, GBM is histopathologically characterized by infiltrating tumor cells within the T2 signal alterations. We hypothesized that depending on the distance from the outline of the contrast-enhancing tumor we might reveal imaging evidence of gradual peritumoral infiltration in GBM and predominantly vasogenic edema around metastases. We thus investigated the gradual change of advanced diffusion metrics with the peritumoral zone in metastases and GBM.
Methods: In 30 patients with GBM and 28 with brain metastases, peritumoral T2 hyperintensity was segmented in 33% partitions based on the total volume beginning at the enhancing tumor margin and divided into inner, middle and outer zones. Diffusion Tensor Imaging (DTI)-derived fractional anisotropy and mean diffusivity as well as Diffusion Microstructure Imaging (DMI)-based parameters Dax-intra, Dax-extra, V‑CSF and V-intra were employed to assess group-wise differences between inner and outer zones as well as within-group gradients between the inner and outer zones.
Results: In metastases, fractional anisotropy and Dax-extra were significantly reduced in the inner zone compared to the outer zone (FA p = 0.01; Dax-extra p = 0.03). In GBM, we noted a reduced Dax-extra and significantly lower intraaxonal volume fraction (Dax-extra p = 0.008, V‑intra p = 0.006) accompanied by elevated axial intraaxonal diffusivity in the inner zone (p = 0.035). Between-group comparison of the outer to the inner zones revealed significantly higher gradients in metastases over GBM for FA (p = 0.04) as well as the axial diffusivity in the intra- (p = 0.02) and extraaxonal compartment (p < 0.001).
Conclusion: Our findings provide evidence of gradual alterations within the peritumoral zone of brain tumors. These are compatible with predominant (vasogenic) edema formation in metastases, whereas our findings in GBM are in line with an axonal destructive component in the immediate peritumoral area and evidence of tumor cell infiltration with accentuation in the tumor's vicinity.
Keywords: Diffusion Magnetic Resonance Imaging; Diffusion Tensor Imaging; Glioblastoma; Metastasis; Radiomics.
© 2024. The Author(s).