Hydroxy functionalization of cations in ionic liquids (ILs) can lead to formation of hydrogen bonds between their OH groups, resulting in so-called (c-c) H-bonds. Thereby, the (c-c) H-bonds compete with regular H-bonds (c-a) between the OH groups and the anions. Polarizable cations, weakly interacting anions, and long alkyl chains at the cation support the propensity for the formation of (c-c) H-bonds. At low temperatures, the equilibrium between (c-c) and (c-a) H-bonds is strongly shifted in favor of the cation-cation interaction. Herein, we clarify the pressure dependence on (c-c) and (c-a) H-bond distributions in the IL 1-(2-hydroxyethyl)-3-methylimidazolium hexafluorophosphate [HOC2C1Im][PF6], in mixtures of [HOC2C1Im][PF6] with the nonhydroxy-functionalized IL 1-propyl-3-methylimidazolium hexafluorophosphate [C3C1Im][PF6] and in [HOC2C1Im][PF6] including trace amounts of water. The infrared (IR) spectra provide clear evidence that the (c-c) H-bonds diminish with increasing pressure in favor of the (c-a) H-bonds. Adding trace amounts of water results in enhanced (c-c) clustering due to cooperative effects. At ambient pressure, the water molecules are involved in the (c-c) H-bond motifs. Increasing pressure leads to squeezing them out of H-bond clusters, finally resulting in demixing of water and the IL at the microscopic level.