Background: Influenza vaccine viruses grown in eggs may acquire egg-adaptive mutations that may reduce antigenic similarity between vaccine and circulating influenza viruses and decrease vaccine effectiveness. We compared cell- and egg-based quadrivalent influenza vaccines (QIVc and QIVe, respectively) for preventing test-confirmed influenza over 3 US influenza seasons (2017-2020).
Methods: Using a retrospective test-negative design, we estimated the relative vaccine effectiveness (rVE) of QIVc vs QIVe among individuals aged 4 to 64 years who had an acute respiratory or febrile illness and were tested for influenza in routine outpatient care. Exposure, outcome, and covariate data were obtained from electronic health records linked to pharmacy and medical claims. Season-specific rVE was estimated by comparing the odds of testing positive for influenza among QIVc vs QIVe recipients. Models were adjusted for age, sex, geographic region, influenza test date, and additional unbalanced covariates. A doubly robust approach was used combining inverse probability of treatment weights with multivariable regression.
Results: The study included 31 824, 33 388, and 34 398 patients in the 2017-2018, 2018-2019, and 2019-2020 seasons, respectively; ∼10% received QIVc and ∼90% received QIVe. QIVc demonstrated superior effectiveness vs QIVe in prevention of test-confirmed influenza: rVEs were 14.8% (95% CI, 7.0%-22.0%) in 2017-2018, 12.5% (95% CI, 4.7%-19.6%) in 2018-2019, and 10.0% (95% CI, 2.7%-16.7%) in 2019-2020.
Conclusions: This study demonstrated consistently superior effectiveness of QIVc vs QIVe in preventing test-confirmed influenza over 3 seasons characterized by different circulating viruses and degrees of egg adaptation.
Keywords: cell-based quadrivalent influenza vaccine; egg adaptation; influenza; influenza virus mismatch; relative vaccine effectiveness.
© The Author(s) 2024. Published by Oxford University Press on behalf of Infectious Diseases Society of America.