Cauli-Det: enhancing cauliflower disease detection with modified YOLOv8

Front Plant Sci. 2024 Apr 18:15:1373590. doi: 10.3389/fpls.2024.1373590. eCollection 2024.

Abstract

Cauliflower cultivation plays a pivotal role in the Indian Subcontinent's winter cropping landscape, contributing significantly to both agricultural output, economy and public health. However, the susceptibility of cauliflower crops to various diseases poses a threat to productivity and quality. This paper presents a novel machine vision approach employing a modified YOLOv8 model called Cauli-Det for automatic classification and localization of cauliflower diseases. The proposed system utilizes images captured through smartphones and hand-held devices, employing a finetuned pre-trained YOLOv8 architecture for disease-affected region detection and extracting spatial features for disease localization and classification. Three common cauliflower diseases, namely 'Bacterial Soft Rot', 'Downey Mildew' and 'Black Rot' are identified in a dataset of 656 images. Evaluation of different modification and training methods reveals the proposed custom YOLOv8 model achieves a precision, recall and mean average precision (mAP) of 93.2%, 82.6% and 91.1% on the test dataset respectively, showcasing the potential of this technology to empower cauliflower farmers with a timely and efficient tool for disease management, thereby enhancing overall agricultural productivity and sustainability.

Keywords: YOLOv8; agricultural disease management; cauliflower disease detection; machine vision; vegetable disease detection.

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research is funded by the Researchers Supporting Project Number (RSPD2024R890), King Saud University, Riyadh, Saudi Arabia.