The impact of invasive species on biodiversity, food security and economy is increasingly noticeable in various regions of the globe as a consequence of climate change. Yet, there is limited research on how climate change affects the distribution of the invasive Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera:Liviidae) in Ghana. Using maxnet package to fit the Maxent model in R software, we answered the following questions; (i) what are the main drivers for D. citri distribution, (ii) what are the D. citri-specific habitat requirements and (iii) how well do the risk maps fit with what we know to be correctly based on the available evidence?. We found that temperature seasonality (Bio04), mean temperature of warmest quarter (Bio10), precipitation of driest quarter (Bio17), moderate resolution imaging spectroradiometer land cover and precipitation seasonality (Bio15), were the most important drivers of D. citri distribution. The results follow the known distribution records of the pest with potential expansion of habitat suitability in the future. Because many invasive species, including D. citri, can adapt to the changing climates, our findings can serve as a guide for surveillance, tracking and prevention of D. citri spread in Ghana.
Keywords: Asian citrus psyllid; Diaphorina citri; climate change; maxnet; species distribution modeling.