Impact of temperature on physical and cognitive performance in elite female football players during intermittent exercise

Scand J Med Sci Sports. 2024 May;34(5):e14646. doi: 10.1111/sms.14646.

Abstract

There is limited research on female football players, especially related to their physical and cognitive performance under different climactic conditions. We analyzed the impact of a hot environmental temperature on physical performance and anticipation in elite female football players during a fatigue-inducing intermittent protocol. Elite female players (n = 21) performed the countermovement jump (CMJ) and responded to filmed sequences of offensive play under two distinct environmental temperatures (i.e., mild environment temperature- 20°C and 30% rh versus hot environment temperature- 38°C and 80% rh), interspersed by 1-week interval. Linear mixed models were used. CMJ performance declined following the intermittent protocol on both temperature conditions (p < 0.05). Moreover, there were significant main effects for protocol on CMJ speed (m/s) (p = 0.001; ηp 2 = 0.12), CMJ power (p = 0.002; ηp 2 = 0.11), and CMJ Heightmax (p = 0.002; ηp 2 = 0.12). After performing the intermittent protocol, exposure to a hot temperature caused a greater decline in anticipation accuracy (mild temperature = 64.41% vs. hot temperature = 53.44%; p < 0.001). Our study shows impaired performance in elite female football players following an intermittent protocol under hot compared with mild environmental conditions. We report decreased performance in both CMJ and anticipation performance under hotter conditions. The results reveal that exposure to hot temperatures had a negative effect on the accuracy of their anticipatory behaviors. We consider the implication of the work for research and training interventions.

Keywords: anticipation; fatigue; hot environment; physical performance; soccer; women.

MeSH terms

  • Adult
  • Athletic Performance* / physiology
  • Athletic Performance* / psychology
  • Cognition* / physiology
  • Female
  • Hot Temperature*
  • Humans
  • Soccer* / physiology
  • Young Adult