High Density Loading and Collisional Loss of Laser-Cooled Molecules in an Optical Trap

Phys Rev Lett. 2024 Apr 19;132(16):163403. doi: 10.1103/PhysRevLett.132.163403.

Abstract

We report optical trapping of laser-cooled molecules at sufficient density to observe molecule-molecule collisions for the first time in a bulk gas. SrF molecules from a red-detuned magneto-optical trap (MOT) are compressed and cooled in a blue-detuned MOT. Roughly 30% of these molecules are loaded into an optical dipole trap with peak number density n_{0}≈3×10^{10} cm^{-3} and temperature T≈40 μK. We observe two-body loss with rate coefficient β=2.7_{-0.8}^{+1.2}×10^{-10} cm^{3} s^{-1}. Achieving this density and temperature opens a path to evaporative cooling towards quantum degeneracy of laser-cooled molecules.