Nonequilibrium Criticality at the Onset of Time-Crystalline Order

Phys Rev Lett. 2024 Apr 19;132(16):167102. doi: 10.1103/PhysRevLett.132.167102.

Abstract

We explore the phase transitions at the onset of time-crystalline order in O(N) models driven out of equilibrium. The spontaneous breaking of time translation symmetry and its Goldstone mode are captured by an effective description with O(N)×SO(2) symmetry, where the emergent external SO(2) results from a transmutation of the internal symmetry of time translations. Using the renormalization group and the ε=4-d expansion in a leading two-loop analysis, we identify a new nonequilibrium universality class. Strikingly, it controls the long-distance physics no matter how small the microscopic breaking of equilibrium conditions is. The O(N=2)×SO(2) symmetry group is realized for magnon condensation in pumped yttrium iron garnet films and in exciton-polariton systems with a polarization degree of freedom.