African swine fever (ASF) is a viral disease that affects domestic and feral pigs. While not currently present in Australia, ASF outbreaks have been reported nearby in Indonesia, Timor-Leste, and Papua New Guinea. Feral pigs are found in all Australian states and territories and are distributed in a variety of habitats. To investigate the impacts of an ASF introduction event in Australia, we used a stochastic network-based metapopulation feral pig model to simulate ASF outbreaks in different regions of Australia. Outbreak intensity and persistence in feral pig populations was governed by local pig recruitment rates, population size, carcass decay period, and, if applicable, metapopulation topology. In Northern Australia, the carcass decay period was too short for prolonged persistence, while endemic transmission could possibly occur in cooler southern areas. Populations in Macquarie Marshes in New South Wales and in Namadgi National Park in the Australian Capital Territory had the highest rates of persistence. The regions had different modes of transmission that led to long-term persistence. Endemic Macquarie Marshes simulations were characterised by rapid transmission caused by high population density that required a fragmented metapopulation to act as a bottleneck to slow transmission. Endemic simulations in Namadgi, with low density and relatively slow transmission, relied on large, well-connected populations coupled with long carcass decay times. Despite the potential for endemic transmission, both settings required potentially unlikely population sizes and dynamics for prolonged disease survival.
Keywords: African swine fever; Australia; Feral pigs; Mathematical modelling.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.