Ultrathin Boundary-Less SnO2 Films with Surface-Activated Two-Dimensional Nanograins Enable Fast and Sensitive Hydrogen Gas Sensing

ACS Sens. 2024 May 24;9(5):2653-2661. doi: 10.1021/acssensors.4c00508. Epub 2024 May 6.

Abstract

Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated electron transportation in the conventional nanocrystalline sensing layers. To address this long-standing issue, in the present work, we report a class of highly reactive and boundary-less ultrathin SnO2 films, which are fabricated by the topochemical transformation of 2D SnO transferred from liquid Sn-Bi droplets. The ultrathin SnO2 films are purposely made to consist of well-crystallized quasi-2D nanograins with in-plane grain sizes going beyond 30 nm, whereby the hydroxyl adsorption and grain boundary side-effects are effectively suppressed, giving rise to an activated (101)-dominating dangling-bond surface and a surface-controlled electrical transportation with an exceptional electron mobility of 209 cm2 V-1 s-1. Our work provides a new cost-effective strategy to disruptively improve the gas reception and transduction of SnO2. The proposed chemiresistive sensors exhibit fast, sensitive, and selective hydrogen sensing performance at a much-reduced working temperature of 60 °C. The remarkable sensing performance as well as the simple and scalable fabrication process of the ultrathin SnO2 films render the thus-developed sensors attractive for long awaited practical applications in hydrogen-related industries.

Keywords: gas−solid interaction; hydrogen sensing; surface activation; two-dimensional nanograins; ultrathin boundary-less SnO2 films.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gases / analysis
  • Gases / chemistry
  • Hydrogen* / analysis
  • Hydrogen* / chemistry
  • Nanostructures / chemistry
  • Semiconductors
  • Surface Properties
  • Tin Compounds* / chemistry

Substances

  • Tin Compounds
  • Hydrogen
  • stannic oxide
  • Gases