Background: Current segmentation approaches for radiation treatment planning in head and neck cancer patients (HNCP) typically consider the entire mandible as an organ at risk, whereas segmentation of the maxilla remains uncommon. Accurate risk assessment for osteoradionecrosis (ORN) or implant-based dental rehabilitation after radiation therapy may require a nuanced analysis of dose distribution in specific mandibular and maxillary segments. Manual segmentation is time-consuming and inconsistent, and there is no definition of jaw subsections.
Materials and methods: The mandible and maxilla were divided into 12 substructures. The model was developed from 82 computed tomography (CT) scans of HNCP and adopts an encoder-decoder three-dimensional (3D) U-Net structure. The efficiency and accuracy of the automated method were compared against manual segmentation on an additional set of 20 independent CT scans. The evaluation metrics used were the Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and surface DSC (sDSC).
Results: Automated segmentations were performed in a median of 86 s, compared to manual segmentations, which took a median of 53.5 min. The median DSC per substructure ranged from 0.81 to 0.91, and the median HD95 ranged from 1.61 to 4.22. The number of artifacts did not affect these scores. The maxillary substructures showed lower metrics than the mandibular substructures.
Conclusions: The jaw substructure segmentation demonstrated high accuracy, time efficiency, and promising results in CT scans with and without metal artifacts. This novel model could provide further investigation into dose relationships with ORN or dental implant failure in normal tissue complication prediction models.
Keywords: Artificial intelligence; Dental rehabilitation; Head and neck cancer; Jaw; Osteoradionecrosis; Radiation therapy.
© 2024 The Authors.