Background: While low-dose computed tomography scans are traditionally used for attenuation correction in hybrid myocardial perfusion imaging (MPI), they also contain additional anatomic and pathologic information not utilized in clinical assessment. We seek to uncover the full potential of these scans utilizing a holistic artificial intelligence (AI)-driven image framework for image assessment.
Methods: Patients with SPECT/CT MPI from 4 REFINE SPECT registry sites were studied. A multi-structure model segmented 33 structures and quantified 15 radiomics features for each on CT attenuation correction (CTAC) scans. Coronary artery calcium and epicardial adipose tissue scores were obtained from separate deep-learning models. Normal standard quantitative MPI features were derived by clinical software. Extreme Gradient Boosting derived all-cause mortality risk scores from SPECT, CT, stress test, and clinical features utilizing a 10-fold cross-validation regimen to separate training from testing data. The performance of the models for the prediction of all-cause mortality was evaluated using area under the receiver-operating characteristic curves (AUCs).
Results: Of 10,480 patients, 5,745 (54.8%) were male, and median age was 65 (interquartile range [IQR] 57-73) years. During the median follow-up of 2.9 years (1.6-4.0), 651 (6.2%) patients died. The AUC for mortality prediction of the model (combining CTAC, MPI, and clinical data) was 0.80 (95% confidence interval [0.74-0.87]), which was higher than that of an AI CTAC model (0.78 [0.71-0.85]), and AI hybrid model (0.79 [0.72-0.86]) incorporating CTAC and MPI data (p<0.001 for all).
Conclusion: In patients with normal perfusion, the comprehensive model (0.76 [0.65-0.86]) had significantly better performance than the AI CTAC (0.72 [0.61-0.83]) and AI hybrid (0.73 [0.62-0.84]) models (p<0.001, for all).CTAC significantly enhances AI risk stratification with MPI SPECT/CT beyond its primary role - attenuation correction. A comprehensive multimodality approach can significantly improve mortality prediction compared to MPI information alone in patients undergoing cardiac SPECT/CT.
Keywords: all-cause mortality; artificial intelligence; computed tomography; coronary artery calcification; epicardial adipose tissue; myocardial perfusion.