Short-Term Disruption of TGFβ Signaling in Adult Mice Renders the Aorta Vulnerable to Hypertension-Induced Dissection

bioRxiv [Preprint]. 2024 Apr 26:2024.04.22.590484. doi: 10.1101/2024.04.22.590484.

Abstract

Hypertension and transient increases in blood pressure from extreme exertion are risk factors for aortic dissection in patients with age-related vascular degeneration or inherited connective tissue disorders. Yet, the common experimental model of angiotensin II-induced aortopathy in mice appears independent of high blood pressure as lesions do not occur in response to an alternative vasoconstrictor, norepinephrine, and are not prevented by co-treatment with a vasodilator, hydralazine. We investigated vasoconstrictor administration to adult mice 1 week after disruption of TGFβ signaling in smooth muscle cells. Norepinephrine increased blood pressure and induced aortic dissection by 7 days and even within 30 minutes that was rescued by hydralazine; results were similar with angiotensin II. Changes in regulatory contractile molecule expression were not of pathological significance. Rather, reduced synthesis of extracellular matrix yielded a vulnerable aortic phenotype by decreasing medial collagen, most dynamically type XVIII, and impairing cell-matrix adhesion. We conclude that transient and sustained increases in blood pressure cause dissection in aortas rendered vulnerable by inhibition of TGFβ-driven extracellular matrix production by smooth muscle cells. A corollary is that medial fibrosis, a frequent feature of medial degeneration, may afford some protection against aortic dissection.

Publication types

  • Preprint