2D 1H sLASER Long-TE and 3D 31P Chemical Shift Imaging at 3 T for Monitoring Fasting-Induced Changes in Brain Tumor Tissue

J Magn Reson Imaging. 2025 Jan;61(1):426-438. doi: 10.1002/jmri.29422. Epub 2024 May 9.

Abstract

Background: Emerging evidence suggests that fasting could play a key role in cancer treatment. Its metabolic effects on gliomas require further investigation.

Purpose: To design a multi-voxel 1H/31P MR-spectroscopic imaging (MRSI) protocol for noninvasive metabolic monitoring of cerebral, fasting-induced changes on an individual patient/tumor level, and to assess its technical reliability/reproducibility.

Study type: Prospective.

Population: MRS phantom. Twenty-two patients (mean age = 61, 6 female) with suspected WHO grade II-IV glioma examined before and after 72-hour-fasting prior to biopsy/resection.

Field strength/sequence: 3-T, 1H decoupled 3D 31P MRSI, 2D 1H sLASER MRSI at an echo time of 144 msec, 2D 1H MRSI (as water reference), T1-weighted, T1-weighted contrast-enhanced, T2-weighted, and FLAIR. sLASER and PRESS sequences were used for phantom measurements.

Assessment: Phantom measurements and spectral simulations were performed with various echo-times for protocol optimization. In vivo spectral analyses were conducted using LCModel and AMARES, obtaining quality/fitting parameters (linewidth, signal-to-noise-ratio, and uncertainty measures of fitting) and metabolite intensities. The volume of glioma sub-regions was calculated and correlated with MRS findings. Ex-vivo spectra of necrotic tumor tissues were obtained using high-resolution magic-angle spinning (HR-MAS) technique.

Statistical tests: Wilcoxon signed-rank test, Bland-Altman plots, and coefficient of variation were used for repeatability analysis of quality/fitting parameters and metabolite concentrations. Spearman ρ correlation for the concentration of ketone bodies with volumes of glioma sub-regions was determined. A P-value <0.05 was considered statistically significant.

Results: 1H and 31P repeatability measures were highly consistent between the two sessions. β-hydroxybutyrate and acetoacetate were detectable (fitting-uncertainty <50%) in glioma sub-regions of all patients who completed the 72-hour-fasting cycle. β-hydroxybutyrate accumulation was significantly correlated with the necrotic/non-enhancing tumor core volume (ρ = 0.81) and validated using ex-vivo 1H HR-MAS.

Data conclusion: We propose a comprehensive MRS protocol that may be used for monitoring cerebral, fasting-induced changes in patients with glioma.

Evidence level: 1 TECHNICAL EFFICACY: Stage 4.

Keywords: 1H sLASER long‐TE; MR spectroscopy; fasting; glioma; ketone bodies.

MeSH terms

  • Adult
  • Aged
  • Brain / diagnostic imaging
  • Brain Neoplasms* / diagnostic imaging
  • Fasting*
  • Female
  • Glioma* / diagnostic imaging
  • Humans
  • Imaging, Three-Dimensional*
  • Magnetic Resonance Imaging* / methods
  • Magnetic Resonance Spectroscopy / methods
  • Male
  • Middle Aged
  • Phantoms, Imaging*
  • Prospective Studies
  • Reproducibility of Results