Hexavalent iridium (IrVI) oxide is predicted to be more active and stable than any other iridium oxide for the oxygen evolution reaction in acid; however, its experimental realization remains challenging. In this work, we report the synthesis, characterization, and application of atomically dispersed IrVI oxide (IrVI-ado) for proton exchange membrane (PEM) water electrolysis. The IrVI-ado was synthesized by oxidatively substituting the ligands of potassium hexachloroiridate(IV) (K2IrCl6) with manganese oxide (MnO2). The mass-specific activity (1.7 × 105 amperes per gram of iridium) and turnover number (1.5 × 108) exceeded those of benchmark iridium oxides, and in situ x-ray analysis during PEM operations manifested the durability of IrVI at current densities up to 2.3 amperes per square centimeter. The high activity and stability of IrVI-ado showcase its promise as an anode material for PEM electrolysis.