Layered oxide cathode materials may undergo irreversible oxygen loss and severe phase transitions during high voltage cycling and may be susceptible to transition metal dissolution, adversely affecting their electrochemical performance. Here, to address these challenges, we propose synergistic doping of nonmetallic elements and in situ electrochemical diffusion as potential solution strategies. Among them, the distribution of the nonmetallic element fluorine within the material can be regulated by doping boron, thereby suppressing manganese dissolution through surface enrichment of fluorine. Furthermore, in situ electrochemical diffusion of fluorine from the surface into the bulk of the materials after charging reduces the energy barrier of potassium ion diffusion while effectively inhibiting irreversible oxygen loss under high voltage. The modified K0.5Mn0.83Mg0.1Ti0.05B0.02F0.1O1.9 layered oxide cathode exhibits a high capacity of 147 mAh g-1 at 50 mA g-1 and a long cycle life of 2200 cycles at 500 mA g-1. This work demonstrates the efficacy of synergistic doping and in situ electrochemical diffusion of nonmetallic elements and provides valuable insights for optimizing rechargeable battery materials.
Keywords: high voltage; layered oxide cathodes; nonmetallic elements; oxygen loss; potassium-ion batteries; synergistic doping.