A systematic mutation analysis of 13 major SARS-CoV-2 variants

Virus Res. 2024 Jul:345:199392. doi: 10.1016/j.virusres.2024.199392. Epub 2024 May 15.

Abstract

SARS-CoV-2 evolves constantly with various novel mutations. Due to their enhanced infectivity, transmissibility and immune evasion, a comprehensive understanding of the association between these mutations and the respective functional changes is crucial. However, previous mutation studies of major SARS-CoV-2 variants remain limited. Here, we performed systematic analyses of full-length amino acids mutation, phylogenetic features, protein physicochemical properties, molecular dynamics and immune escape as well as pseudotype virus infection assays among thirteen major SARS-CoV-2 variants. We found that Omicron exhibited the most abundant and complex mutation sites, higher indices of hydrophobicity and flexibility than other variants. The results of molecular dynamics simulation suggest that Omicron has the highest number of hydrogen bonds and strongest binding free energy between the S protein and ACE2 receptor. Furthermore, we revealed 10 immune escape sites in 13 major variants, some of them were reported previously, but four of which (i.e. 339/373/477/496) are first reported to be specific to Omicron, whereas 462 is specific to Epslion. The infectivity of these variants was confirmed by the pseudotype virus infection assays. Our findings may help us understand the functional consequences of the mutations within various variants and the underlying mechanisms of the immune escapes conferred by the S proteins.

Keywords: Molecular dynamics analysis; Mutation; SARS-CoV-2; Sequence analysis; Spike protein; Variants.

MeSH terms

  • Angiotensin-Converting Enzyme 2 / chemistry
  • Angiotensin-Converting Enzyme 2 / genetics
  • Angiotensin-Converting Enzyme 2 / metabolism
  • COVID-19* / virology
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Immune Evasion*
  • Molecular Dynamics Simulation*
  • Mutation*
  • Phylogeny
  • Protein Binding
  • SARS-CoV-2* / classification
  • SARS-CoV-2* / genetics
  • SARS-CoV-2* / immunology
  • Spike Glycoprotein, Coronavirus* / chemistry
  • Spike Glycoprotein, Coronavirus* / genetics

Substances

  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2
  • Angiotensin-Converting Enzyme 2
  • ACE2 protein, human

Supplementary concepts

  • SARS-CoV-2 variants