Background: To optimize right ventricular-pulmonary coupling during veno-arterial (VA) ECMO weaning, inotropes, vasopressors and/or vasodilators are used to change right ventricular (RV) function (contractility) and pulmonary artery (PA) elastance (afterload). RV-PA coupling is the ratio between right ventricular contractility and pulmonary vascular elastance and as such, is a measure of optimized crosstalk between ventricle and vasculature. Little is known about the physiology of RV-PA coupling during VA ECMO. This study describes adaptive mechanisms for maintaining RV-PA coupling resulting from changing pre- and afterload conditions in VA ECMO.
Methods: In 13 pigs, extracorporeal flow was reduced from 4 to 1 L/min at baseline and increased afterload (pulmonary embolism and hypoxic vasoconstriction). Pressure and flow signals estimated right ventricular end-systolic elastance and pulmonary arterial elastance. Linear mixed-effect models estimated the association between conditions and elastance.
Results: At no extracorporeal flow, end-systolic elastance increased from 0.83 [0.66 to 1.00] mmHg/mL at baseline by 0.44 [0.29 to 0.59] mmHg/mL with pulmonary embolism and by 1.36 [1.21 to 1.51] mmHg/mL with hypoxic pulmonary vasoconstriction (p < 0.001). Pulmonary arterial elastance increased from 0.39 [0.30 to 0.49] mmHg/mL at baseline by 0.36 [0.27 to 0.44] mmHg/mL with pulmonary embolism and by 0.75 [0.67 to 0.84] mmHg/mL with hypoxic pulmonary vasoconstriction (p < 0.001). Coupling remained unchanged (2.1 [1.8 to 2.3] mmHg/mL at baseline; - 0.1 [- 0.3 to 0.1] mmHg/mL increase with pulmonary embolism; - 0.2 [- 0.4 to 0.0] mmHg/mL with hypoxic pulmonary vasoconstriction, p > 0.05). Extracorporeal flow did not change coupling (0.0 [- 0.0 to 0.1] per change of 1 L/min, p > 0.05). End-diastolic volume increased with decreasing extracorporeal flow (7.2 [6.6 to 7.8] ml change per 1 L/min, p < 0.001).
Conclusions: The right ventricle dilates with increased preload and increases its contractility in response to afterload changes to maintain ventricular-arterial coupling during VA extracorporeal membrane oxygenation.
Keywords: Extracorporeal membrane oxygenation; Heterometric adaption; Homeometric adaption; Right ventricular function; Ventriculo-arterial coupling.
© 2024. The Author(s).