Objective: This study examined major themes and sentiments and their trajectories and interactions over time using subcategories of Reddit data. The aim was to facilitate decision-making for psychosocial rehabilitation. Materials and Methods: We utilized natural language processing techniques, including topic modeling and sentiment analysis, on a dataset consisting of more than 38,000 topics, comments, and posts collected from a subreddit dedicated to the experiences of people who tested positive for COVID-19. In this longitudinal exploratory analysis, we studied the dynamics between the most dominant topics and subjects' emotional states over an 18-month period. Results: Our findings highlight the evolution of the textual and sentimental status of major topics discussed by COVID survivors over an extended period of time during the pandemic. We particularly studied pre- and post-vaccination eras as a turning point in the timeline of the pandemic. The results show that not only does the relevance of topics change over time, but the emotions attached to them also vary. Major social events, such as the administration of vaccines or enforcement of nationwide policies, are also reflected through the discussions and inquiries of social media users. In particular, the emotional state (i.e., sentiments and polarity of their feelings) of those who have experienced COVID personally. Discussion: Cumulative societal knowledge regarding the COVID-19 pandemic impacts the patterns with which people discuss their experiences, concerns, and opinions. The subjects' emotional state with respect to different topics was also impacted by extraneous factors and events, such as vaccination. Conclusion: By mining major topics, sentiments, and trajectories demonstrated in COVID-19 survivors' interactions on Reddit, this study contributes to the emerging body of scholarship on COVID-19 survivors' mental health outcomes, providing insights into the design of mental health support and rehabilitation services for COVID-19 survivors.
Keywords: COVID-19; mental health support; pandemic; sentiment analysis; vaccination.