Background: The Berlin definition of acute respiratory distress syndrome (ARDS) includes only clinical characteristics. Understanding unique patient pathobiology may allow personalized treatment. We aimed to define and describe ARDS phenotypes/endotypes combining clinical and pathophysiologic parameters from a Canadian ARDS cohort.
Methods: A cohort of adult ARDS patients from multiple sites in Calgary, Canada, had plasma cytokine levels and clinical parameters measured in the first 24 h of ICU admission. We used a latent class model (LCM) to group the patients into several ARDS subgroups and identified the features differentiating those subgroups. We then discuss the subgroup effect on 30 day mortality.
Results: The LCM suggested three subgroups (n1 = 64, n2 = 86, and n3 = 30), and 23 out of 69 features made these subgroups distinct. The top five discriminating features were IL-8, IL-6, IL-10, TNF-a, and serum lactate. Mortality distinctively varied between subgroups. Individual clinical characteristics within the subgroup associated with mortality included mean PaO2/FiO2 ratio, pneumonia, platelet count, and bicarbonate negatively associated with mortality, while lactate, creatinine, shock, chronic kidney disease, vasopressor/ionotropic use, low GCS at admission, and sepsis were positively associated. IL-8 and Apache II were individual markers strongly associated with mortality (Area Under the Curve = 0.84).
Perspective: ARDS subgrouping using biomarkers and clinical characteristics is useful for categorizing a heterogeneous condition into several homogenous patient groups. This study found three ARDS subgroups using LCM; each subgroup has a different level of mortality. This model may also apply to developing further trial design, prognostication, and treatment selection.
Keywords: Acute respiratory distress syndrome; Cluster analysis; Feature selection; Mixed data analysis.
© 2024. The Author(s).