Since the 19th century, underwater explosions have posed a significant threat to service members. While there have been attempts to establish injury criteria for the most vulnerable organs, namely the lungs, existing criteria are highly variable due to insufficient human data and the corresponding inability to understand the underlying injury mechanisms. This study presents an experimental characterization of isolated human lung dynamics during simulated exposure to underwater shock waves. We found that the large acoustic impedance at the surface of the lung severely attenuated transmission of the shock wave into the lungs. However, the shock wave initiated large bulk pressure-volume cycles that are distinct from the response of the solid organs under similar loading. These pressure-volume cycles are due to compression of the contained gas, which we modeled with the Rayleigh-Plesset equation. The extent of these lung dynamics was dependent on physical confinement, which in real underwater blast conditions is influenced by factors such as rib cage properties and donned equipment. Findings demonstrate a potential causal mechanism for implosion injuries, which has significant implications for the understanding of primary blast lung injury due to underwater blast exposures.
Copyright: © 2024 Bar-Kochba et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.