Mucosal immunity plays a major role not only in the prevention but probably also in the outcomes of COVID-19. An enhanced production of secretory immunoglobulin A (sIgA) might contribute to the activation of the immune response mechanisms. To assess the levels of sIgA produced by epithelial cells in the nasal and pharyngeal mucosa and those measured in salivary gland secretions and to study the course of COVID-19 following the combined scheme of intranasal and subcutaneous administration of a bacteria-based immunostimulant agent. This study included 69 patients, aged between 18 and 60, who had moderate COVID-19 infection. They were divided into two groups: Group 1 (control group) included 39 patients who received only background therapy, and Group 2 was made up of 30 patients who received background therapy in combination with the Immunovac VP4 vaccine, a bacteria-based immunostimulant agent, which was given for 11 days starting from the day of admission to hospital. The levels of sIgA were measured by ELISA in epithelial, nasal and pharyngeal swabs, and salivary gland secretions at baseline and on days 14 and 30. The combined scheme of intranasal and subcutaneous administration of the Immunovac VP4 vaccine in the complex therapy of patients with COVID-19 is accompanied by increased synthesis of sIgA in nasal and pharyngeal swabs, more intense decrease in the level of C-reactive protein (CRP) and reduction in the duration of fever and length of hospitalization compared to the control group. Prescribing a immunostimulant agent containing bacterial ligands in complex therapy for COVID-19 patients helps to enhance mucosal immunity and improves the course of the disease.
Keywords: Bacterial ligands during COVID-19; COVID-19 hospitalization; Microbial-based immune therapy in COVID-19; Mucosal immunity; sIgA.
© 2024. The Author(s).