In this work, La(FeCuMnMgTi)O3 HEO nanoparticles with a perovskite-type structure are synthesized and used in the electrocatalytic CO2 reduction reaction (CO2RR). The catalyst demonstrates high performance as an electrocatalyst for the CO2RR, with a Faradaic efficiency (FE) of 92.5% at a current density of 21.9 mA cm-2 under -0.75 V vs a saturated calomel electrode (SCE). Particularly, an FE above 54% is obtained for methyl isopropyl ketone (C5H10O, MIPK) at a partial current density of 16 mA cm-2, overcoming all previous works. Besides, the as-prepared HEO catalyst displays robust stability in the CO2RR. The excellent catalytic performance of La(FeCuMnMgTi)O3 is ascribed to the synergistic effect between the electronic effects associated with five cations occupying the high-entropy sublattice sites and the oxygen vacancies within the perovskite structure of the HEO. Finally, DFT calculations indicate that Cu plays a vital role in the catalytic activity of the La(FeCuMnMgTi)O3 HEO nanoparticles toward C2+ products.