Alarming multidrug resistance in Staphylococcus aureus isolated from raw milk of cows with subclinical mastitis: Antibiotic resistance patterns and occurrence of selected resistance genes

PLoS One. 2024 May 16;19(5):e0301200. doi: 10.1371/journal.pone.0301200. eCollection 2024.

Abstract

Bovine mastitis is a widespread and costly disease that affects dairy farming globally, characterized by mammary gland inflammation. Bovine intramammary gland infection has been associated with more than 135 different pathogens of which Staphylococcus aureus is the main etiology of sub-clinical mastitis (SCM). The current study was designed to investigate the prevalence, antibiotic resistance pattern, and the presence of antibiotic resistance genes (mecA, tetK, aacA-aphD and blaZ) in S. aureus isolated from the raw milk of cows with subclinical mastitis. A total of 543 milk samples were collected from lactating cows such as Holstein Friesian (n = 79), Sahiwal (n = 175), Cholistani (n = 107), and Red Sindhi (n = 182) from different dairy farms in Pakistan. From the milk samples microscopic slides were prepared and the somatic cell count was assessed to find SCM. To isolate and identify S. aureus, milk was streaked on mannitol salt agar (MSA) plates. Further confirmation was done based on biochemical assays, including gram staining (+ coccus), catalase test (+), and coagulase test (+). All the biochemically confirmed S. aureus isolates were molecularly identified using the thermonuclease (nuc) gene. The antibiotic resistance pattern of all the S. aureus isolates was evaluated through the disc diffusion method. Out of 543 milk samples, 310 (57.09%) were positive for SCM. Among the SCM-positive samples, S. aureus was detected in 30.32% (94/310) samples. Out of 94 isolates, 47 (50%) were determined to be multidrug resistant (MDR). Among these MDR isolates, 11 exhibited resistance to Cefoxitin, and hence were classified as methicillin-resistant Staphylococcus aureus (MRSA). The S. aureus isolates showed the highest resistance to Lincomycin (84.04%) followed by Ampicillin (45.74%), while the least resistance was shown to Sulfamethoxazole/Trimethoprim (3.19%) and Gentamycin (6.38%). Polymerase chain reaction (PCR) analysis revealed that 55.31% of the isolates carried blaZ gene, 46.80% carried tetK gene, 17.02% harbored the mecA gene, whereas, aacA-aphD gene was found in 13.82% samples. Our findings revealed a significant level of contamination of milk with S. aureus and half (50%) of the isolates were MDR. The isolated S. aureus harbored various antibiotic resistance genes responsible for the absorbed phenotypic resistance. The alarmingly high prevalence of MDR S. aureus isolates and MRSA strains in these cases possess a serious risk to public health, emphasizes the urgent need to address this issue to protect both human and animal health in Pakistan.

MeSH terms

  • Animals
  • Anti-Bacterial Agents* / pharmacology
  • Bacterial Proteins / genetics
  • Cattle
  • Drug Resistance, Multiple, Bacterial / genetics
  • Female
  • Mastitis, Bovine* / epidemiology
  • Mastitis, Bovine* / microbiology
  • Microbial Sensitivity Tests
  • Milk* / microbiology
  • Pakistan / epidemiology
  • Staphylococcal Infections* / epidemiology
  • Staphylococcal Infections* / microbiology
  • Staphylococcal Infections* / veterinary
  • Staphylococcus aureus* / drug effects
  • Staphylococcus aureus* / genetics
  • Staphylococcus aureus* / isolation & purification

Grants and funding

This research was supported by the joint project of Pakistan Science Foundation and National Natural Science Foundation of China PSF-NSFC III /Agr/KP/AWKUM/(20) and (31961143009); Project number MECESUP UCT 0804; Researchers Supporting Project number (RSPD2024R971) King Saud University, Riyadh, Saudi Arabia.