Extracellular vesicles (EVs) are nano-sized membrane particles secreted by various cell types that are involved in many important cellular processes. Recently, EVs originating from immune cells, such as dendritic cells, chimeric antigen receptor T cells, and natural killer cells, have attracted much attention because of their known direct and indirect antitumor activity. Here, we report the EVs released by cytokine-activated CD8+ T (caCD8) cells and its cytotoxicity against cancer cells. CaCD8 cells can release EVs following stimulation of CD8+ T cells with an anti-CD3 antibody and a cytokine cocktail ex vivo. The isolated vesicles have typical EV characteristics, such as an oval shape and a size distribution between 30 and 200 nm, as well as CD81 expression. Notably, caCD8-EVs displayed cytotoxicity against various cancer cells in vitro. Furthermore, mechanism analysis demonstrates that caCD8-EVs not only contain typical cytotoxic proteins (i.e. granzyme B and perforin), but also significantly enrich interferon γ (IFNγ) compared with caCD8 cells. EV-derived IFNγ participates in EV-induced apoptosis in cancer cells. Therefore, our data reveal antitumor effects of EVs secreted from caCD8 cells and the potential role of the EV-derived IFNγ.
Keywords: IFNγ; cytokine-activated CD8+ T cell; cytokine-induced killer cells; cytotoxicity; extracellular vesicles.
© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Leukocyte Biology. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].