Background: The aim of the present study was to evaluate the impact of intratumoral metabolic heterogeneity and quantitative 18F-FDG PET/CT imaging parameters in predicting patient outcomes in thymic epithelial tumors (TETs).
Methods: This retrospective study included 100 patients diagnosed with TETs who underwent pretreatment 18F-FDG PET/CT. The maximum and mean standardized uptake values (SUVmax and SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) on PET/CT were measured. Heterogeneity index-1 (HI-1; standard deviation [SD] divided by SUVmean) and heterogeneity index-2 (HI-2; linear regression slopes of the MTV according with different SUV thresholds), were evaluated as heterogeneity indices. Associations between these parameters and patient survival outcomes were analyzed.
Results: The univariate analysis showed that Masaoka stage, TNM stage, WHO classification, SUVmax, SUVmean, TLG, and HI-1 were significant prognostic factors for progression-free survival (PFS), while MTV, HI-2, age, gender, presence of myasthenia gravis, and maximum tumor diameter were not. Subsequently, multivariate analyses showed that HI-1 (p < 0.001) and TNM stage (p = 0.002) were independent prognostic factors for PFS. For the overall survival analysis, TNM stage, WHO classification, SUVmax, and HI-1 were significant prognostic factors in the univariate analysis, while TNM stage remained an independent prognostic factor in multivariate analyses (p = 0.024). The Kaplan Meier survival analyses showed worse prognoses for patients with TNM stages III and IV and HI-1 ≥ 0.16 compared to those with stages I and II and HI-1 < 0.16 (log-rank p < 0.001).
Conclusion: HI-1 and TNM stage were independent prognostic factors for progression-free survival in TETs. HI-1 generated from baseline 18F-FDG PET/CT might be promising to identify patients with poor prognosis.
© 2024 The Author(s). Thoracic Cancer published by John Wiley & Sons Australia, Ltd.