How reliable are femoropelvic kinematics during deep squats? The influence of subject-specific skeletal modelling on measurement variability

Gait Posture. 2024 Jul:112:120-127. doi: 10.1016/j.gaitpost.2024.05.006. Epub 2024 May 8.

Abstract

Background: Biplanar radiography displays promising results in the production of subject-specific (S.specific) biomechanical models. However, the focus has predominantly centred on methodological investigations in gait analysis. Exploring the influence of such models on the analysis of high range of motion tasks linked to hip pathologies is warranted. The aim of this study is to investigate the effect of S.Specific modelling techniques on the reliability of deep squats kinematics in comparison to generic modelling.

Methods: 8 able-bodied male participants attended 5 motion capture sessions conducted by 3 observers and performed 5 deep squats in each. Prior to each session a biplanar scan was acquired with the reflective-markers attached. Inverse kinematics of pelvis and thigh segments were calculated based on S.specific and Generic model definition. Agreement between the two models femoropelvic orientation in standing was assessed with Bland-Altman plots and paired t- tests. Inter-trial, inter-session, inter-observer variability and observer/trial difference and ratio were calculated for squat kinematic data derived from the two modelling approaches.

Results: Compared to the Generic model, the S.Specific model produced a calibration trial that is significantly offset into more posterior pelvis tilt (-2.8±2.7), hip extension (-2.2±3.8), hip abduction (-1.2±3.6) and external rotation (-13.8±11.4). The S.specific model produced significantly different squat kinematics in the sagittal plane of the pelvis (entire squat cycle) and hip (between 40 % and 60 % of the squat cycle). Variability analysis indicated that the error magnitude between the two models was comparable (difference<2°). The S.specific model exhibited a lower variability in the observer/trial ratio in the sagittal pelvis and hip, the frontal hip, but showed a higher variability in the transverse hip.

Significance: S.specific modelling appears to introduce a calibration offset that primarily translates into an effect in the sagittal plane kinematics. However, the clinical added value of S.specific modelling in terms of reducing experimental sources of kinematic variability was limited.

Keywords: Biplanar radiography; Deep squats; Femoropelvic joint angles; Kinematic variability; Subject-specific modelling.

MeSH terms

  • Adult
  • Biomechanical Phenomena
  • Hip Joint / physiology
  • Humans
  • Male
  • Pelvis* / physiology
  • Range of Motion, Articular / physiology
  • Reproducibility of Results
  • Young Adult