A wirelessly programmable, skin-integrated thermo-haptic stimulator system for virtual reality

Proc Natl Acad Sci U S A. 2024 May 28;121(22):e2404007121. doi: 10.1073/pnas.2404007121. Epub 2024 May 20.

Abstract

Sensations of heat and touch produced by receptors in the skin are of essential importance for perceptions of the physical environment, with a particularly powerful role in interpersonal interactions. Advances in technologies for replicating these sensations in a programmable manner have the potential not only to enhance virtual/augmented reality environments but they also hold promise in medical applications for individuals with amputations or impaired sensory function. Engineering challenges are in achieving interfaces with precise spatial resolution, power-efficient operation, wide dynamic range, and fast temporal responses in both thermal and in physical modulation, with forms that can extend over large regions of the body. This paper introduces a wireless, skin-compatible interface for thermo-haptic modulation designed to address some of these challenges, with the ability to deliver programmable patterns of enhanced vibrational displacement and high-speed thermal stimulation. Experimental and computational investigations quantify the thermal and mechanical efficiency of a vertically stacked design layout in the thermo-haptic stimulators that also supports real-time, closed-loop control mechanisms. The platform is effective in conveying thermal and physical information through the skin, as demonstrated in the control of robotic prosthetics and in interactions with pressure/temperature-sensitive touch displays.

Keywords: thermo-haptic stimulator.

MeSH terms

  • Humans
  • Robotics / instrumentation
  • Robotics / methods
  • Skin
  • Touch* / physiology
  • Virtual Reality*
  • Wireless Technology* / instrumentation