Reversible Deposition/Dissolution of Double Hydroxides to Modulate Electrolyte pH Enabling High-Performance Aqueous Zinc-Ion Batteries

ACS Appl Mater Interfaces. 2024 Jun 5;16(22):28391-28401. doi: 10.1021/acsami.4c01861. Epub 2024 May 20.

Abstract

Vanadium oxide has been extensively studied as a host of zinc ion intercalation but still suffers from low conductivity, dissolution, and byproduct accumulation during cycling. Here, we hydrothermally synthesize the VO2@MXene Ti3C2 (MV) composite and find that in the MV//3 M Zn(CF3SO3)2//Zn system, the double hydroxide Zn12(CF3SO3)9(OH)15·nH2O (ZCOH) uniformly covers VO2 during the charging process and dissolves reversibly during the discharge process. In situ X-ray diffraction of the MV combined with in situ pH measurements reveals that ZCOH acts as a pH buffer during cycling, which is beneficial to the cycling stability of batteries. And the theoretical calculation indicates that the decomposition energy required by ZCOH on the MV surface is lower than that on pure VO2, which is more conducive to ZCOH dissolution. The coin battery exhibits high-rate performance of 65.1% capacity retention at a current density of 15 A g-1 (compared to 0.6 A g-1) and a long cycling life of 20,000 cycles with a capacity retention of 80.7%. For a 22.4 mA h soft-packaged battery, its capacity remains at 72.1% after 2000 cycles. This work demonstrates the active role of ZCOH in the electrochemical process of VO2 and provides a new perspective for exploiting this mechanism to develop high-performance aqueous zinc-ion battery vanadium oxide cathode materials.

Keywords: MXene Ti3C2; aqueous zinc-ion batteries; double hydroxide Zn12(CF3SO3)9(OH)15·nH2O; high-performance VO2 cathode; pH buffer.