Electrocatalytic acetylene hydrogenation to ethylene (E-AHE) is a promising alternative for thermal-catalytic process, yet it suffers from low current densities and efficiency. Here, we achieved a 71.2 % Faradaic efficiency (FE) of E-AHE at a large partial current density of 1.0 A cm-2 using concentrated seawater as an electrolyte, which can be recycled from the brine waste (0.96 M NaCl) of alkaline seawater electrolysis (ASE). Mechanistic studies unveiled that cation of concentrated seawater dynamically prompted unsaturated interfacial water dissociation to provide protons for enhanced E-AHE. As a result, compared with freshwater, a twofold increase of FE of E-AHE was achieved on concentrated seawater-based electrolysis. We also demonstrated an integrated system of ASE and E-AHE for hydrogen and ethylene production, in which the obtained brine output from ASE was directly fed into E-AHE process without any further treatment for continuously cyclic operations. This innovative system delivered outstanding FE and selectivity of ethylene surpassed 97.0 % and 97.5 % across wide-industrial current density range (≤ 0.6 A cm-2), respectively. This work provides a significant advance of electrocatalytic ethylene production coupling with brine refining of seawater electrolysis.
Keywords: brine; electrocatalytic acetylene hydrogenation; industrial current density; seawater electrolysis.
© 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.