To enhance the amine-sensitivity of intelligent films for accurate monitoring of chilled meat freshness, different additions (0, 1, 2, 3 wt%) of MIL-100(Fe) were incorporated into the matrix composed of anthocyanins (ANs) and pectin (P). Results indicated that the tensile strength, thermal stability, barrier performance and absorption capacity of the films with MIL-100(Fe) were improved significantly (p < 0.05). Especially, the film with 2 % MIL-100(Fe) exhibited the best performance due to its compact structure and the highest crystallinity. Additionally, adsorption isotherms of the films with MIL-100(Fe) were fitted on the Langmuir and the Freundlich isotherm, and adsorption kinetics were fitted on the pseudo-second-order model and Elovich model, respectively (R2 > 0.96), suggesting a combined mechanism of chemisorption and intraparticle diffusion. Besides, when the films were exposed in ammonia environment, they changed color from purple to blue-violet, finally to green. Ultimately, film with 2 % MIL-100(Fe) was used to monitor the chilled meat freshness, as expected, similar color variation was observed at three stages of meat freshness (fresh, sub-fresh, and spoiled), which enabled the accurate differentiation of meat freshness. Thus, films with MIL-100(Fe) demonstrated the potential to be amine-sensitive intelligent packaging for monitoring chilled meat freshness in real time.
Keywords: Chilled meat freshness; Intelligent films; MIL-100(Fe).
Copyright © 2024 Elsevier B.V. All rights reserved.