The prognostic value of artificial intelligence to predict cardiac amyloidosis in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement

Eur Heart J Digit Health. 2024 Mar 13;5(3):295-302. doi: 10.1093/ehjdh/ztae022. eCollection 2024 May.

Abstract

Aims: Cardiac amyloidosis (CA) is common in patients with severe aortic stenosis (AS) undergoing transcatheter aortic valve replacement (TAVR). Cardiac amyloidosis has poor outcomes, and its assessment in all TAVR patients is costly and challenging. Electrocardiogram (ECG) artificial intelligence (AI) algorithms that screen for CA may be useful to identify at-risk patients.

Methods and results: In this retrospective analysis of our institutional National Cardiovascular Disease Registry (NCDR)-TAVR database, patients undergoing TAVR between January 2012 and December 2018 were included. Pre-TAVR CA probability was analysed by an ECG AI predictive model, with >50% risk defined as high probability for CA. Univariable and propensity score covariate adjustment analyses using Cox regression were performed to compare clinical outcomes between patients with high CA probability vs. those with low probability at 1-year follow-up after TAVR. Of 1426 patients who underwent TAVR (mean age 81.0 ± 8.5 years, 57.6% male), 349 (24.4%) had high CA probability on pre-procedure ECG. Only 17 (1.2%) had a clinical diagnosis of CA. After multivariable adjustment, high probability of CA by ECG AI algorithm was significantly associated with increased all-cause mortality [hazard ratio (HR) 1.40, 95% confidence interval (CI) 1.01-1.96, P = 0.046] and higher rates of major adverse cardiovascular events (transient ischaemic attack (TIA)/stroke, myocardial infarction, and heart failure hospitalizations] (HR 1.36, 95% CI 1.01-1.82, P = 0.041), driven primarily by heart failure hospitalizations (HR 1.58, 95% CI 1.13-2.20, P = 0.008) at 1-year follow-up. There were no significant differences in TIA/stroke or myocardial infarction.

Conclusion: Artificial intelligence applied to pre-TAVR ECGs identifies a subgroup at higher risk of clinical events. These targeted patients may benefit from further diagnostic evaluation for CA.

Keywords: Artificial intelligence; Cardiac amyloidosis; Transcatheter aortic valve replacement.